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ABSTRACT 

p 3 . 3 .  
The accumulation of accurate tracking data on an Earth satellite 

which is relatively free from unknown or unpredictable accelerations 
offers the opportunity to obtain estimates of tracking-station locations, 
data systematic errors, and the Earths potential field, together with a 
precise ephemeris of the satellite. This Report is an examination of a 
simplified version of the case stated, with attention to the determina- 
tion of station coordinates. 

The accuracy to which the station coordinates may be obtained 
from the tracking of single and multiple passes by means of range or 
doppler ( range-rate ) measurements alone is examined under the 
assumption that the satellite’s orbit is perfectly known. The results 
indicate that dramatic improvement is attained when data from two 
different passes are statistically combined. A method is introduced 
whereby this improvement may be easily understood. The middle 
semi-axis of the three-dimensional error ellipsoid associated with a 
single pass is introduced as the most valuable measure of accuracy. 
The variation of accuracy with satellite altitude, station latitude, data 
type, and the geometry of the pass is extensively examined. 

It is found that the ranging accuracy equivalent to a 0.03-m/sec 
range-rate accuracy varies from 1.8 m at a satellite altitude of 100 nm 
to 15.5 m at 1000 nm, and that such data accuracies should permit 
determination of all three station coordinates to about 5 m when the 
data from two or more passes are utilized. #?- 

VI 
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1. INTRODUCTION 

The accuracies obtained in modern systems for tracking 
space probes and ballistic missiles have become so great 
that the “systematic errors” have become the dominant 
type. In order to realize the benefits of this accuracy 
potential, the systematic errors must be understood and 
reduced. The only practical procedure is experimental 
examination of these errors. Recent studies have illus- 
trated the feasibility of calibrating precise ground track- 
ing systems through the tracking of Earth satellites 
(Ref. 1). It is espccted that such studies of systematic 
errors will permit their elimination or proper inclusion 
in the statistical estimation of the trajectory. 

Although the major purpose of such calibration satel- 
lites is to provide a means of examining the systematic 
errors of the tracking system, it is natural that informa- 
tion of fundamental and practical significance will be 
obtained: for example, the description of the Earth‘s 
gravitational field and the accurate real-time evaluation 
of integrated atmospheric effects on the radio tracking 
signals when the satellite is near the horizon. For the 
tracking of lunar and interplanetary probes, the primary 
systematic error is that in the station’s coordinates. This 
Report is restricted to an examination of the error statis- 
tics associated with the use of a calibration satellite for 
the purpose of evaluating tracking-station coordinates. 
In order to illustrate an important aspect of the problem, 
we have made two important simplifying assumptions: 
(1) that the satellite’s coordinates with respect to the 
Earths spin axis and to Greenwich arc perfectly known 
(from analysis of all tracking information), and (2) that 
all station clocks are perfectly synchronized with Green- 
wich Mean Time. 

In Ref. 1, a single pass was analyzed, and the mean 
coordinates of the station were treated as perfectly 
known, a procedure which is entirely appropriate for the 
case analyzed. In the present case, the orbit is treated as 
perfectly known, and the station coordinates are found 
with respect to the orbit (hence, to the basic reference 
system) for single and multiple passes. The results for 
single passes, using range data only and doppler data 
only, are presented in Section I1 of this Report. 

Section 111 presents the most interesting and, perhaps, 
surprising results obtained by combining data from sepa- 
rate passes. The reasons for the significant improvement 
obtainable through the use of data from two or more 
passes are given in Section IV, together with a more 
useful way of characterizing single-pass results which 
allows easy visualization of the favorable geometry asso- 
ciated with combining results of separate passes. 

In Section V, we examine the variation in the accuracy 
of determining the critical middle semi-axis of the con- 
centration ellipsoid of station coordinates for a single 
pass. The results indicate that the variation of accuracy 
with satellite maximum elevation and station latitude is 
relatively small. It is shown that the random error in 
ranging which produces an accuracy equivalent to 
0.03-m/sec doppler is a strong function of satellite alti- 
tude, varying from 15.3 m at an altitude of 1860 km 
(1000 nm) to 1.8 m at 186 km. Data accuracies required 
to obtain 5-m accuracy in station locating are shown. 

In Section VI, the effect of the restrictive assumptions 
is discussed, and some procedures are suggested for 
future examinations of this problem. 

1 
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II. ACCURACY OF LOCATING STATION BY DATA FROM A SINGLE PASS 

186 
930 

1860 

In the following discussion, we present results sum- 
marizing the accuracy to which a station's spherical co- 
ordinates may be determined by tracking a single pass 
of a satellite of perfectly known orbit. The standard 
deviations in radius, latitude, and longitude are used as 
measures of the error. 

26.9 27.0 
21.8 21.2 
35.1 33.2 

A. Procedure for Cases Examined 

The observation vector y was assumed to depend only 
on the coordinates 9 of the tracking station. The noise in 
the observations was assumed to be gaussian and inde- 
pendent from point to point. The minimum-variance 
linear unbiased estimator of the tracking-station coordi- 
nates is, then, 

SQ* = (ATWA)-'ATW6y (1) 
where 6 represents the deviation from the reference 
station coordinates or the observable quantities. Here, 
6y = A ~ Q  and, for small deviations, defines A; W is the 
inverse of the data-noise covariance matrix; and the 
superior T denotes the transpose. The  statistics of 
the error in station coordinates are described by 

covar Q* = (ATWA)-' 2 (])-I ( 2 )  
The basic normal matrices J for one orbital pass were 
computed for each station, data type, satellite altitude, 
and direction of the pass. 

All satellite orbits were circular and inclined at 32 deg. 
Three orbital altitudes (186 km, 930 km, 1860 km) and 
five station latitudes, all north, were simulated. Station 
latitudes were chosen from 0 to 30 deg in 7.5-deg incre- 
ments. Different station-satellite geometries were investi- 
gated by a simple procedure. First, stations were placed 
in longitude so as to be directly below the satellite's path, 
thus simulating an overhead pass. For nonoverhead-pass 
geometry, only the epoch of the satellite's initial con- 
dition was changed, causing the station to be east (epoch 
increase) or west (epoch decrease) of the satellite's pass 
because of the Earth's rotation. The magnitude of epoch 
change was increased as the satellite's altitude was in- 
creased, so as to give a similar geometry for each case. 
The overhead case is designated by 0, the epoch increase 
by f, and the epoch decrease (by an equal amount) by 
- . The resulting maximum elevation angles are given in 
Table 1 for the equatorial station. 

Both range and range-rate observations were simu- 
lated, the sampling rates being varied with height. The 

Sample Range standard 
Altitude, I km 1 sp;;;g, 1 deviation, 

m 

sampling rates and data sigmas vs altitude are shown in 
Table 2. The apparent variation of accuracy with altitude 
is due only to the use of a lower sampling rate at higher 
altitudes to conserve computer time, If the 2-sec sample 
spacing had been employed at  all altitudes, the data- 
noise standard deviations would have been identical for 
all three altitudes: 3 0 m  m in range, and 0.03m 
m/sec in range rate. Use of the factor fl is explained 
by the fact that, in usual practice, accuracies are stated 
at a 1-min sample spacing, which is more appropriate for 
space probes. Thus, the accuracy assumptions are equiv- 
alent to 30 m and 0.03 m/sec at  one sample per minute. 

Range rate 
standard deviation, 

m/sec 

Table 1. Maximum elevation angles for 
equatorial station 

186 

930 

1860 

Epoch change Epoch change 
Altitude, 

km 

2 30 fi 0.03 fi 
5 30 fi 0.03 fi 

10 30 < 0.03 

Table 2. Sampling rates and assumed data sigmas for 
equatorial station 

A pass consists of data taken from horizon to horizon. 
In order to discount data taken where the refraction 
effects are large, the assumed data variance was increased 
by 10% of the standard refraction correction at  each 
point. 

B .  Numerical Results 

Tables 3 to 6 summarize the standard deviations in 
radius, latitude, and longitude for the following cases: 
range rate, satellite east; range rate, satellite west; range, 

2 
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Altitude, 
krn 

Table 3. Station-coordinate uncertainty, range rate 
only, satellite east 

Altitude, 

dag north 

50.0 0.90 0.1 7 

station Standard deviation of station Coordinates 

latitude, Radius, latitude, longitude, 
m 1 0 - 3  deg dag dag north 

1860 0 155.0 1.32 0.77 
30 470.0 31.8 3.06 

930 

1860 

Table 4. Station-coordinate uncertainty, range rate 
only, satellite west 

0 164.0 0.94 0.57 
30 61.4 0.64 0.36 

0 144.0 1.28 0.76 
30 96.6 1.15 0.70 

I I I 

Radius, 
Altitude, 

krn 
latitude, 

dag north 

satellite east; and range, satellite west. To conserve space, 
the results are tabulated for each altitude by only the 
0- and 30-deg latitude stations. 

C. Significance of Results 

The standard deviations describing our present knowl- 
edge of absolute station locations, excluding satellite and 
space-probe tracking, are about 60 m in radius and 
1 X deg in latitude and longitude, with a factor of 2 
either way encompassing both the pessimistic and the 
optimistic viewpoints. A reasonable goal is 5 m in radius 
and 0.05 X deg in latitude and longitude. Some of 
the results are encouraging; in Table 1, it is suggested 
that the radius goal can be met for low-altitude satellites 

Table 5. Station-coordinate uncertainty, range only, ~ 

satellite east 

Altitude, 

930 

; 860 

Station I Standard deviation of station coordinates I 

dag north 

431 .O 
419.0 6.74 

0.25 
30 231 2.0 155.0 i 4.9 

Table 6. Station-coordinate uncertainty, range only, 
satellite west 

434.0 I 3: 1 316.0 

930 1 j 1 178.0 1 
0.49 1 8:;: 

1860 80.0 0.43 0.26 
60.3 0.58 0.36 

108.0 0.70 

and, in Table 2, it is shown that latitude and longitude 
are obtainable to 0.3 X lo-" deg and 0.2 X deg, 
respectively. The overall picture, however, appears to be 
rather discouraging in the case of precise station survey- 
ing. To make matters even worse, the results have a very 
uneven quality and suggest that high-altitude satellites 
are of little value. 

In Section IV, it is demonstrated that moderately good 
accuracies may be obtained by combining two geometri- 
cally dissimilar passes. The basic weakness in the method 
of describing single-pass results presented in this Section 
is its failure to suggest this potentiality. The complete 
results of this study are presented in Section V, using 
coordinates more suitable than those employed above. 

3 
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111. ACCURACY OF LOCATING STATION BY COMBINED DATA FROM TWO PASSES 

Range rate 

If the vector of observations y (see Section 11) is aug- 
mented to include data from two geometrically dissimilar 
passes, the covariance of the resulting estimate of station 
coordinates is significantly altered. Using the nomen- 
clature of Section 11, let the normal matrices for passes 1 
and 2 over the same station be J1, J 2 ,  respectively. It is 
well-known that the error in the 9F2 is expressed by 

0 
30 

Some interesting results of a Monte Carlo simulation 
of station locating by ranging to a perfectly known satel- 
lite were reported by Reich and Schucker (Ref. 2). In the 
following paragraphs the “dramatic improvement” ob- 
served by these authors is described at more length and 
in a different way. A simple method for understanding 
and anticipating such results is presented in Section IV. 

+, - +, - 

A. Some Numerical Results 

Here, we present enough numerical results to illustrate 
the significant improvement obtainable by combining 
two dissimilar passes at a given station. It is not the 
purpose of this Section to demonstrate how the results 
vary with data type and satellite orbit parameters (for 
discussion of that topic, see Section V). 

3.77 0.01 8 0.01 4 
1.59 0.025 0.01 0 

Typical results obtained by combining two passes are 
listed in Table 7. Here, the standard deviations in radius, 
latitude, and longitude have again been used as the 
measure of accuracy. It is interesting to compare the 
two-pass results with the single-pass results shown in 
Section 11. For the equatorial-station range-rate case at 
the 1860-km altitude, the single-pass standard deviations 
in radius, latitude, and longitude are: 144 m, 1.3 X l t3  
deg, and 0.8 X deg for probe east; and 155 m, 
1.3 X deg for probe west. The 
two passes combined give 6.5 m, 0.058 X deg, and 
0.041 X lo-“ deg, respectively: an apparent improvement 
by a factor of 20. Similar situations have been observed 
in numerous other cases. 

deg, and 0.8 X 

Range 

Range rate 

B. Significance of Results 

It appears that the accuracy goals suggested in Sec- 
tion I1 can be met without significant increase in the data 
accuracies assumed, provided that data from two or more 
passes are combined. Before pursuing that point further, 
we shall endeavor to provide a simple explanation of the 
improvement, which is not “dramatic” if the single-pass 
results are viewed correctly. In order to do this, we 
transform the errors to a local Cartesian-coordinate sys- 
tem and examine the properties of the three-dimensional 
concentration ellipsoids which may be used to visualize 
the uncertainties (Ref. 3). 

0 +. - 36.7 0.1 48 0.1 37 
30 +, - 22.9 0.31 5 0.1 44 

0 +. - 8.29 0.048 0.035 
30 +. - 3.24 0.047 0.02 1 

Table 7. Station-locating accuracy for selected two-pass situations 

~ 

Range rate 

1860 
Range 

Satellite 
altitude, 

km 

~ ~~ __ 

0 +, - 6.51 0.059 0.04 1 
30 +. - 12.4 0.234 0.1 49 

0 +. - 11.6 0.063 0.065 
30 +, - 12.8 0.1 36 0.078 

Data type 
Station 

latitude, 
deg north 

Standard deviation of station coordinates 
Type. of 
passes 

combined Radius, latitude, longitude, 
deg deg I 

186 t I I I I I 

930 I I 1 I I I I I I I 

I 0.096 I 0.098 
0.082 
0.1 68 

Range 

4 
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IV. REASONS FOR IMPROVEMENT IN KNOWLEDGE OF STATION COORDINATES 

WHEN PASSES 

The results presented in Section I11 clearly illustrate 
the fact that all three coordinates of a station’s location 
may be determined to high accuracy if data from two 
dissimilar passes are combined. This would appear some- 
what surprising if our understanding of the single-pass 
results were limited to that provided in Section 11, where 
the standard deviations of radius, latitude, and longitiidc 
were used as measures of the error. In this Section, we 
consider covar 9 in a local Cartesian-coordinate system 
centered at  the nominal station location. In order to 
distinguish between the two systems, the station- 
coordinate vector in the new system is denoted by x. 

We then examine the ellipsoid of concentration asso- 
ciated with covar x rx in order to obtain an under- 
standing of the favorable combination of two passes. The 
quadratic form 6xTri16x = 1 is designated as the 1-0 error 
ellipsoid. This technique is well described in textbooks 
on mathematical statistics. In  order to understand how 
two passes with single-pass covariance matrices rr l ,  rx2 
combine, it is only necessary to realize that the 1-0 ellip- 
soid, 6xT r;;? 6x = 1 associated with the combined esti- 
mate must be interior (or tangent) to the 1-0 ellipsoids 
associated with r,, and rXz. 

In the following calculation, it will be established that 
the single-pass ellipsoids are always cigar-shaped, so that 
the two shorter axes are small in relation to the length. 
The orientation of the long axis indicates the direction 
for which no good information is available. We have 
found that, quite naturally, the direction in which the 
ellipsoid points can be correlated with the geometry of 
the pass. Where differences in geometry are present on 
two passes, the largest semi-axes of the two ellipsoids are 
nearly orthogonal, and the region interior to both “cigars” 
is relatively small, The missing information from the first 
pass is supplied by the second pass. 

It thus becomes evident that, for the multiple-pass 
situation, the figure which best describes the quality of 
the determination is not the long axis but, rather, the 
middle-sized axis. The size of the middle semi-axis (MSA) 
describes the quality of the most useful information, 
whereas the largest semi-axis (LSA) supplies the more 
sterile information: i.e., just how poorly the third coor- 
dinate is known. For the multiple-pass case, the LSA for 
a single pass is not important, since substantially all the 

ARE COMBINED 

information for determining that coordinate will come 
from a subsequent pass. 

In order to illustrate the method, we examine a typical 
case in some detail. Once the approach is clear, many 
generalizations may be made. A primary purpose of this 
development is to illustrate how multiple-pass geometric 
advantage can be understood and expressed. Ait’riough 
the point is not stressed, it is also true that other types 
of observations taken on the same single pass may result 
in 1-0 ellipsoids in which the largest semi-axes are nearly 
orthogonal to the LSA of the range or range-rate ellip- 
soid. It is obvious that precise angular observations ful- 
fill this condition. 

A. Trunsformution of Spherical-Coordinute 
Errors to the Local Curtesiun System 

In this computation, let (T ,  +, A)’ denote the station 
coordinates 9 in the radius-latitude-longitude system, and 
(x,, x?, xri)’ = x denote the east, north (both in the local 
horizontal plane), and local vertical directions. Small 
perturbations in these coordinates are related by 

T i /  L1 O 
(4) 

If covar 9 = rs is known, covar x may be easily obtained 
by the relationship 

covar x = rx = B r+ BT ( 5 )  
The purpose of this transformation is to put all the co- 
ordinates in the same dimensions to facilitate interpre- 
tation of the 1-0 ellipsoids. 

6. Numericul Example 

1. Eigenvalues and Eigenvectors of Transformed 
Covariances 

The numerical example we present here is that of an 
equatorial station taking range-rate data for the following 
cases: satellite east (-), and satellite west (+). The 
covariance matrices r+,, I?+_, transformed to the x sys- 
tem, are shown below: 

5 



JPL TECHNICAL REPORT NO. 32-534 

Semi-axis 

7.2012700 E-3  1.2060016 E-2  1.2211694 E-2 

2.0267948 E - 2 2.0503977 E - 2 kmz ) (6) 

(Symmetric) 2.0828316 E - 2 

2.1488987 E - 2 - 2.2730572 E - 2 

7.4103073 E - 3 1.2597053 E - 3 - 1.3336902 E - 3 

covar x, = 

covar x- = 

Direction cosine of eigenvector 

X I  X 2  X 3  

Value, rn 

2.4138522 E -2/ 

LSA ( + I  
LSA ( - 1  

MSA (f) 
MSA ( - 1  

SSA ( + I  
SSA (-1 

(Symmetric) 

220 0.386 0.648 0.657 
230 0.374 0.637 - 0.675 

6.7 -0.336 -0.564 0.754 
7.0 -0.340 -0.583 - 0.738 

4.3 0.859 -0.51 1 0.000 
4.4 0.863 -0.505 0.002 

The square roots of the largest, middle, and smallest 
eigenvalues correspond to the LSA, MSA, and SSA 
(smallest semi-axis) of the 1-0 error ellipsoids. The values 
of the various semi-axes and the unit vectors (eigenvec- 
tors) defining their directions are listed in Table 8. The 
1-0 ellipsoid of the combined estimate has the properties 
listed in Table 9. 

Semi-axis 

LSA 

M SA 

SSA 

Table 8. Values of semi-axes and eigenvectors 
defining their directions 

Direction cosine of eigenvector 

XI x2 x3 

Value, rn 

7.3 0.505 0.856 0.1 10 
6.5 - 0.056 -0.095 0.994 
3.1 0.861 -0.508 0.000 

Table 9. Properties of 1 -U ellipsoid of 
combined-pass estimate 

Inspection of the single-pass LSA and MSA reveals 
that the horizontal-plane components of the LSA and 
MSA are substantially the same, but that the vertical 
components are opposite. The SSA values are virtually 
identical in both cases. The error ellipsoids are shown 
in Fig. 1. 

2. Relation of Eigenvectors to Pass Geometry 
Insight to the problem can be gained by first consider- 

ing an overhead pass with a nonrotating Earth. Clearly, 
the station could be horizontally displaced by a small 
distance in a direction normal to the plane of motion 
(i.e., the p X V direction, p being the station-to-probe 
vector, and V being the satellite velocity), and no change 
would occur in the data. This implies an infinite semi- 
axis in this direction. However, a small horizontal dis- 
placement of the station in the probe-motion direction 
when the probe is overhead would result in a maximum 
change, so that this direction is well determined. 

The addition of the Earth‘s rotation removes the per- 
fect coplanarity of the p and V vectors; therefore, rather 
than infinite uncertainty in the p X V direction, a large 
finite uncertainty is expected and is verified in Table 10. 

For a nonoverhead pass and a nonrotating Earth, the 
geometrical considerations are more complicated, but 
some of the determining considerations are found from 
more careful analysis of the principles stated above. The 
sensitivity of a given doppler measurement D to the 
station’s position may be described by the vector V D  
(gradient of D) .  The doppler measurement is equivalent 
to range-rate, or 

(7) 

where V = satellite velocity vector and p = station-to- 
probe vector. For the geometry, see Fig. 2, where r is 
the Earth-center-to-satellite vector. 

Then, differentiating and assuming r fixed, 

This gradient vector describes the direction along which 
a small fixed-magnitude displacement of the station 
would yield a maximum doppler change (most sensitive 

6 
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Range only 

LSA, m MSA, m SSA, m 
latitude, 

pa55  

Table 10. Semi-axes of error ellipsoids for single passes 

Range mte only 

LSA, m MSA, m SSA, m 

0 

7.5 

15 

22.5 

30 

I Satellite altitude = 1 86 km ( 1  00 nm) 

- 479 22.3 20.2 79.9 2.80 1.57 
0 1 16,000 29.7 17.3 4690 1.77 1.34 + 476 22.2 20.1 80.0 2.80 1.57 

- 474 23.4 19.7 78.8 2.74 1.54 
0 47,700 29.5 17.3 3860 1.78 1 .oo + 468 22.4 19.9 77.4 2.75 1.55 

- 472 23.0 19.0 73.3 2.64 1 S O  
0 9,900 29.4 16.3 1260 1.79 1.05 + 456 22.8 19.3 75.7 2.58 1.47 

- 489 24.2 1 7.9 73.8 2.34 1.35 
0 5,760 29.3 16.2 74 8 1 .80 1.06 + 448 23.7 18.3 68.3 2.43 1.39 

- 868 27.7 17.5 114 1.93 1.18 
0 4,500 29.2 16.8 592 1 .80 1.11 + 546 26.9 1 7.4 74.7 2.00 1.22 

7.5 

15 

16.3 11.0 21 2 
13.6 I 9.93 I 1,070 
15.7 11.0 205 

- 177 14.9 11.1 179 6.33 3.55 
0 5.870 13.6 9.95 1,145 3.69 2.43 + 192 16.4 11.0 210 7.05 3.77 

- 161 13.3 11.3 114 5.53 3.28 
0 2,050 13.6 9.93 94 1 3.69 2.43 + 182 15.8 11.0 189 6.76 3.67 

6.99 3.75 I 3.69 I 2.43 
6.86 3.72 

22.5 

30 

- 21 9 13.6 11.8 144 4.91 2.92 
0 1.1 40 13.6 9.91 669 3.68 2.41 + 161 14.3 11.1 151 6.07 3.44 

- 552 13.5 10.4 338 3.74 2.54 
0 884 13.6 10.3 560 3.68 2.50 + 138 12.1 11.0 101 4.69 2.98 

- 106 10.4 8.45 230 
0 0 1,560 9.68 7.89 596 + 103 10.2 8.48 220 

7.5 0 3,790 9.68 7.93 638 
- 105 9.85 8.56 216 

+ 102 10.4 8.46 21 8 

- 108 9.1 4 8.78 203 
15 0 93 1 9.69 7.90 652 + 99.3 10.3 8.48 208 

- 131 9.1 4 8.46 221 
22.5 0 691 9.69 7.88 71 9 + 93.9 9.69 8.61 182 

- 17,500 9.66 8.37 3580 
30 0 415 9.69 8.1 7 673 + 95.2 9.1 2 8.91 162 

6.97 4.38 
4.94 3.49 
6.77 4.3 1 

6.5 1 4.23 
4.94 3.49 
6.91 4.36 

5.98 4.00 
4.93 3.49 
6.85 4.33 

5.45 3.75 
4.93 3.48 
6.40 4.1 5 

4.97 3.62 
4.93 3.60 
5.62 3.91 
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/-SATELLITE 

Fig. 2. Geometry for assumptions of nonoverhead 
pass and nonrotating Earth 

direction). The direction of this vector may best be inter- 
preted as the direction along which a tape-measure is 
stretched to locate the station. This vector is perpendicu- 
lar to the direction of p and p X V and, using simple 
identities, may be written 

For the overhead case, p and V are always coplanar; 
therefore, no measurements are made normal to this 
plane, or in the p X V direction. 

Certain properties of this measurement vector are best 
described in a satellite-oriented system. Let the station 
coordinates be described by 

R = distance from center of Earth 

v0 = true anomaly of satellite when closest to station 

q0 = angle at Earth center between sta.tion and satel- 

(arbitrarily defined for circular orbits) 

lite at closest approach. 

For the geometry of this system, see Fig. 3. The satellite 
position is now described by only one parameter, V, and 
the following equation results: 

dR = dRi + Rdv,j + Rd$,k (10) 

where 

dR = vector from center of Earth to station 

i = unit vector outward from Earth 

j = unit vector along satellite direction 

k = unit vector across satellite direction 

, where 
iiD l a D  l a D  The components of V D  are - -- - - iiR ' R 2v0 ' R a$,, 

a cos $(, sin (v-v") Ra COS $0 sin ("-Yo) + - = n {  aD 
aR P P3 

aD Ra - = n { - -sin $0 sin ( v - v o )  
a $ O  P 

I} Ra 
$0 cos ( V - V o )  

/ / - - -Lpr "" T SPHERE 

i I 

Fig. 3. Satellite-station spherical coordinates 
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where, since circular orbits only are under consideration, 

a = orbit semi-axis = I r I 
R =  IRI 

P =  IP I  
V n = satellite mean motion = - 
R 

From the discussion above, note that, for a given sta- 
tion and orbit, if O D  at a given value ( v - v " )  is repre- 
sented by (a, b, c), then O D  at - ( v - v 0 )  is (-u, b, -c). 
When observations are symmetrical about v", this sym- 
metry results in a normal equation coefficient matrix of 
the form 

The inverse of this matrix, the covariance matrix, is 

where 

E,,, = maximum elevation angle of satellite 

S,, = slope of VD projection, satellite at closest 

S, = slope of V D  projection, satellite at any point 

approach 

between overhead and set positions 

S = slope of V D projection, satellite at set position 

The following expressions result: 

1 1 - - cos ('a') 
= [ 1 - (?) cos $/o + (37 = 

Similar statements hold true for the pass from rise to 
closest approach, since the vectors are merely the nega- 
tives of those after closest approach. The result of com- 
bining these measurements in this plane is that one 
eigenvector is always between the limits shown. 

Note that the second coordinate of R is uncorrelated 
with the first and third. Therefore, one eigenvalue of 
the matrix is l/j;, and its eigenvector is (0, 1, 0); i.e., it 
lies along the flight-path direction at satellite closest 
approach. 

The remaining eigenvectors are in a plane normal to 
the  flight-path direction at  closest approach.  The  
measurement-direction component in this plane varies 
throughout a pass and may be described by its elevation 
angle from the horizontal plane and by the relative sensi- 
tivity of each measurement. A typical case is illustrated 
in Fig. 4. The slope S (tangent of the elevation angle) of 
those measurements in this plane lies between the limits 

s, 2 s 2 s c a  

S c a  2 tan E m a z  

and (14) 

In summary, the semi-axes of the doppler single-pass 
error ellipsoid are determined by the following rules: 

1. The smallest semi-axis lies in the horizontal plane in 
the direction of the satellite velocity a t  closest 
approach. 

2. The middle semi-axis is determined as the resultant 
of a two-dimensional series of nearly parallel meas- 
urements in a vertical plane containing the closest- 
approach point. The narrow spread of the elevation 
angle of these measurements is given by specified 
inequalities. 

3. The largest semi-axis is determined to approximately 
the magnitude of the MSA over the sine of the 
spread of the measurement vectors (projected on 
the same vertical plane). 

Examination of the rotating-Earth case reveals no signifi- 
cant departure from these results, except in the obvious 
case of an overhead pass. 

1 0  
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R 

ALTITUDE = 930 krn ( a  7308 k r n )  

+ = 13 deg 

R 6378 km 

Ec = ton-'  S' 

ESs, = t o n - '  S, 

i 

0 

k HO R I ZO NTA L P L A NE 

Fig. 4. Relation of measurements determining R and $(, 
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rRANGE-RATE ONLY 
5 - 
0 

V. CRITICAL ACCURACY VARIATION FOR SINGLE PASSES 

0 

A. Summary of Single-Pass Results 

It was shown in Section IV that the middle semi-axis 
of the three-dimensional error ellipsoid 8xTri16x = 1 is the 
most useful single parameter characterizing the accuracy 
obtainable in a particular single pass when data are 
obtainable on one or more other passes. The values of all 
three semi-axes of the 1-u error ellipsoid for the single 
passes examined are summarized in Table 10. Many 
interesting observations may be made by careful study 
of these results. 

Altitude, 
km 

B. Variation of Middle and Largest Semi-axes 
with Type of Pass, Latitude, and Altitude 

1. Variation of Middle Semi-axis with Type of Pass 
It is noteworthy that, for the range only cases, there is 

no significant variation of the MSA withothe geometry of 
the pass. The corresponding variation for the range rate 
only cases is also fairly minor, although here we find that 
the MSA values are almost always largest for the case 
where the satellite is west of the station (+), and always 
smallest for the overhead case. 

length of pass, 

see 

2. Variation of Largest Semi-axis with Latitude and 
Type of Pass 

The largest semi-axis is a strong function of the geom- 
etry of the pass. The satellite east and satellite west 
figures are substantially the same. The overhead-pass 
LSA values are always large and become systematically 
larger as the orbit altitude is decreased, because of the 
shorter duration of the passes. The moderate irregularity 
in the variation with station latitude is not considered to 
be of importance. The significant increase of LSA as the 
station latitude approaches 0 deg is not surprising, since 
the effect of the Earth’s rotation during the pass is small 
because of the symmetry. 186 

930 
1860 3. Variation of Middle Semi-axis with Latitude 

Examination of Table 10 reveals that the range only 
MSA values have no important variation with latitude, 
and that insignificant variation occurs for the overhead 
passes. The range rate only MSA’s are similarly insensi- 
tive for overhead passes, but are somewhat more latitude- 
dependent than the range only cases for the nonoverhead 
passes. 

402 

955 

1649 

4. Variation of Middle Semi-axis with Altitude 
There is a significant variation of the middle semi-axis 

with satellite altitude, as shown in Fig. 5. It is interesting 
to note that the MSA at a 1860-km altitude is 3 times 
larger than the same semi-axis at 186 km for the case of 
range rate, whereas at 1860 km the MSA is 3 times 
smaller than at 186 km for range only. The duration of 
the view periods for each altitude is given in Table 11. 
It will be noted that either range or range-rate measure- 
ments give excellent accuracy for relatively high orbital 
altitudes. Angular observations, if taken, would degrade 
in effectiveness with increasing altitude. 

SATELLITE ALTITUDE, nm 

Fig. 5. Variation of middle semi-axis with altitude for 
overhead pass at equatorial station 

Table 1 1 .  length of view periods for overhead pass at 
equatorial station 

C. Comparison of Range and Range-Rate 
Measurements 

In a system where both range and range-rate meas- 
urements are available, it appears that the biases of 
the ranging system could be calibrated by means of the 

12 
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doppler measurements. In the situation discussed here, 
range biases are assumed to be negligible. Figure 6 is a 
graph of the standard deviation required of range data 
in order that the MSA from a single overhead pass at an 
equatorial station will bc equal to the corresponding 
situation for range rate only. For the region above the 
curve, the most information comes from range rate. 

SATELLITE ALTITUDE, nm 

Fig. 6. Ranging accuracy required to obtain middle 
semi-axis equal to that obtainable with range 

rate of 0.03 m/sec (1  -min sampling rate) 

Figure 6 presents a case which is somewhat too opti- 
mistic as to the value of the range measurements, since 
it will probably be necessary to solve for a small random 

bias on each pass of range data. Even so, a range rate 
only system appears to be competitive with a range only 
system. 

Figure 7 indicates the range and range-rate accuracies 
necessary to achieve an MSA of 5 m as a function of 
satellite altitude for the overhead pass at an equatorial 
station. 

SATELLITE ALTITUDE, nm 

Fig. 7. Data standard deviations required to obtain 
middle semi-axis of 5 m (accuracies normalized 

to I -min sampling rate) 

1 3  
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VI. CONCLUSIONS 

In this Section, we attempt to summarize the signifi- 
cance of this Report and the degree to which its results 
and insights depend upon the rather restrictive assump- 
tions on which the computations are based. Next, this 
restricted problem is contrasted with the larger problem 
of implementing a calibration-satellite system. Finally, 
some observations are made on the problem of the over- 
all best estimate of the trajectory (BET). 

A. Primary Results 

The method used to interpret the value of a single pass 
of tracking data in locating the station, and also the 
visualization of favorable geometry, are substantially 
independent of the simplifying assumptions. The actual 
values of the smaller semi-axes of the 1-0 error ellipsoids 
are certainly subject to some increase in the complete 
solution, which includes the satellite-orbit determination, 
the station systematic errors, and the perturbing forces. 
W e  expect that the rcsults presented here will show the 
proper relationships between the important parameters 
and data types. 

6. Restrictive Assumptions 

The assumption of adequate time synchronization of 
stations in the feasible era of such satellites appears to be 
sound. Timing errors of 1 msec could contribute errors as 
large as 8 m in station location; however, if useful, an 
improvement in time synchronization of one or two orders 
of magnitude is attainable. The unstated assumptions of 
the fixed location of the Earths spin axis with respect to 
the crust, and of the very slow relative motion of points 

on the Earth's crust, are not likely to create short-term 
problems when 5 m is the accuracy goal. 

With respect to the measuring of a station's coordinates 
to 5 m, the most dubious assumption is that of a perfectly 
known orbit. Here, further study is required to determine 
the best selection of orbit parameters and of spacecraft 
shape, attitude control, and reflecting properties, in order 
to optimize the accuracy capabilities. W e  expect that a 
relatively high altitude (over 400 nm) will prove most 
favorable, since the magnitude of effects due to atmos- 
pheric drag and the harmonics of the Earth's potential 
field is lower. A t  the same time, the single-pass accuracies 
degrade only mildly with increasing altitude. An addi- 
tional advantage in the use of higher altitudes is the 
capability of viewing the satellite on two or three con- 
seciitive passes. 

C. The Total Problem 

Here, the most appropriate comment is that implemen- 
tation of the spacecraft design and the ground systems 
for taking and processing thc data obtained and dissemi- 
nating the rcsults is a formidable but feasible task. 
Centralization of data processing for orbit computations 
seems essential. In the steady statc, it is probable that 
locally accurate descriptions of an established orbit could 
be compactly communicated to other locations for rapid 
analysis of the results of a series of p'i sses. 

The spacecraft design is almost completely beyond the 
scope of this Report, except for the few remarks on orbit- 
parameter selection. The dissemination of results and the 
adoption of standards and reference systems present no 
new problems, but would be a source of much discussion. 
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NOMENCLATURE 

A 
a 

B 
BET 

D 
V D  

E 

h 
i 
J 
j 
i 

I k 

I LSA 
MSA 

n 
R 

I 

I 

transformation matrix 
orbit semi-axis = 1 r I 
transformation matrix 
best estimate of trajectory 
doppler measurement 
gradient of doppler measurement 
exponent of 10 (e.g., 
0.178 E -3  = 0.178 X 
elevation angle of projection of DD at 
closest approach 
maximum elevation angle of satellite 
elevation angle of projection of V D  at 
set position 
altitude 
unit vector outward from Earth 
basic normal matrices for one orbital pass 
unit vector along satellite direction 
elements of matrix J 
unit vector across satellite direction 
largest semi-axis 
middle semi-axis 
satellite mean motion = V / R  
vector from center of Earth to station 
distance from center of Earth, km (= I R I )  
vector from center of Earth to satellite 
station coordinates 9 in radius-latitude- 
longitude system 

S 

s c a  

S.9 

Y 
r, 

6 

P 

P 

0 
$0 

slope of VD projection, satellite at any point 
between overhead and set positions 

slope of OD projection, satellite at closest 
approach 

slope of VD projection, satellite at set 
position 

smallest semi-axis 

(superior) transpose of matrix 

satellite velocity vector 

inverse of data-noise covariance matrix 

local east and north horizontal directions 
and local vertical directions 

observation vector 

ellipsoid of concentration 

deviation from reference station coordinates 
or observable quantities 

true anomaly of satellite when closest to 
station (arbitrarily defined for circular 
orbits) 

station-to-satellite vector 

I P I  
coordinates of tracking station 
angle at Earth center between station and 
satellite at closest approach 

equal by definition 
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